Evolutionary Tuning of Combined Multiple Models

نویسندگان

  • Gregor Stiglic
  • Peter Kokol
چکیده

In data mining, hybrid intelligent systems present a synergistic combination of multiple approaches to develop the next generation of intelligent systems. Our paper presents an integration of a Combined Multiple Models (CMM) technique with an evolutionary approach that is used for tuning of parameters. Proposed hybrid classifier was tested in microarray analysis domain. This domain was chosen intentionally, because of the nature of Combined Multiple Models classifiers that are specialized in solving problems with high dimensionality and contain low number of samples. Evolutionary tuning of parameters in combination with validation dataset enables fine tuning of parameters that are usually set to pre-defined values. Using this technique we made another step in leveling the accuracy of comprehensible classifiers to those represented by ensembles of classifiers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

Soft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors

Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

An ANOVA Based Analytical Dynamic Matrix Controller Tuning Procedure for FOPDT Models

Dynamic Matrix Control (DMC) is a widely used model predictive controller (MPC) in industrial plants. The successful implementation of DMC in practical applications requires a proper tuning of the controller. The available tuning procedures are mainly based on experience and empirical results. This paper develops an analytical tool for DMC tuning. It is based on the application of Analysis of V...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006